An Agent-Based Optimization Framework for Engineered Complex Adaptive Systems with Application to Demand Response in Electricity Markets by
نویسندگان
چکیده
The main objective of this research is to develop an integrated method to study emergent behavior and consequences of evolution and adaptation in engineered complex adaptive systems (ECASs). A multi-layer conceptual framework and modeling approach including behavioral and structural aspects is provided to describe the structure of a class of engineered complex systems and predict their future adaptive patterns. The approach allows the examination of complexity in the structure and the behavior of components as a result of their connections and in relation to their environment. This research describes and uses the major differences of natural complex adaptive systems (CASs) with artificial/engineered CASs to build a framework and platform for ECAS. While this framework focuses on the critical factors of an engineered system, it also enables one to synthetically employ engineering and mathematical models to analyze and measure complexity in such systems. In this way concepts of complex systems science are adapted to management science and system of systems engineering. In particular an integrated consumer-based optimization and agent-based modeling (ABM) platform is presented that enables managers to predict and partially control patterns of behaviors in ECASs. Demonstrated on the U.S. electricity markets, ABM is integrated with normative and subjective decision behavior recommended by the U.S. Department of Energy (DOE) and Federal Energy Regulatory Commission (FERC). The approach integrates social networks, social science, complexity theory, and diffusion theory. Furthermore, it has unique and significant contribution in exploring and representing concrete managerial insights for ECASs and offering new optimized actions and modeling paradigms in agent-based simulation.
منابع مشابه
Stochastic Optimization of Demand Response Aggregators in Wholesale Electricity Markets
This paper proposes a stochastic framework for demand response (DR) aggregator to procure DR from customers and sell it to purchasers in the wholesale electricity market. The aggregator assigns fixed DR contracts with customers based on three different load reduction strategies. In the presented problem the uncertainty of market price is considered and the risk of aggregator participation is ma...
متن کاملOptimal Operation of Integrated Energy Systems Considering Demand Response Program
This study presents an optimal framework for the operation of integrated energy systems using demand response programs. The main goal of integrated energy systems is to optimally supply various demands using different energy carriers such as electricity, heating, and cooling. Considering the power market price, this work investigates the effects of multiple energy storage devices and demand res...
متن کاملAn agent-based modeling optimization approach for understanding behavior of engineered complex adaptive systems
The objective of this study is to present a formal agent-based modeling (ABM) platform that enables managers to predict and partially control patterns of behaviors in certain engineered complex adaptive systems (ECASs). The approach integrates social networks, social science, complex systems, and di↵usion theory into a consumer-based optimization and agent-based modeling (ABM) platform. Demonst...
متن کاملMulti Objective Scheduling of Utility-scale Energy Storages and Demand Response Programs Portfolio for Grid Integration of Wind Power
Increasing the penetration of variable wind generation in power systems has created some new challenges in the power system operation. In such a situation, the inclusion of flexible resources which have the potential of facilitating wind power integration is necessary. Demand response (DR) programs and emerging utility-scale energy storages (ESs) are known as two powerful flexible tools that ca...
متن کاملAn Integrated Optimization and Agent-Based Framework for the U.S. Power System
Today, many of the engineered systems are comprised of a large number of components that interact with each other and have the ability to exhibit emergent behavior thus enabling a system to adapt to changing environments. Using the example of the US power grid as a complex adaptive system, we demonstrate how components in a multi-layered power grid structure dynamically interact, evolve and ada...
متن کامل